首页> 外文OA文献 >Methane dynamics regulated by microbial community response to permafrost thaw
【2h】

Methane dynamics regulated by microbial community response to permafrost thaw

机译:微生物群落对多年冻土融化的响应调节甲烷的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Permafrost contains about 50% of the global soil carbon1. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions2, 3. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown3 and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ13C signature (10–15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden4, 5 as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus ‘Methanoflorens stordalenmirensis’6 is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models3, 7. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.
机译:多年冻土约占全球土壤碳的50%1。据认为,多年冻土的融化会导致甲烷和二氧化碳排放形式的土壤碳损失2,3。这种温室气体排放所产生的积极气候反馈的幅度仍然未知3,并且可能在很大程度上取决于人们对微生物群落组成在调节驱动这种生态系统规模的温室气体通量的代谢过程中的作用了解甚少。在这里,我们显示,随着多年冻土融化,植被的变化和甲烷排放量的增加与从氢营养型向部分乙酰碎屑型甲烷生成的转变有关,导致排放的甲烷的δ13C特征(10–15‰)发生了较大变化。我们以瑞典北部4的多年冻土融化的自然景观梯度为模型,研究了微生物群落在调节甲烷循环中的作用,并测试了关于群落动态的知识是否可以改善对永久冻土损失下碳排放的预测.4产甲烷假丝酵母'Methanoflorens stordalenmirensis'6的丰度是甲烷同位素变化的关键预测因子,它反过来预测了甲烷和二氧化碳排放的碳比例,这是模拟与多年冻土融化有关的气候反馈的重要因素全球模型3,7.通过显示大量关键微生物谱系可用于预测甲烷同位素与大气相关的模式以及多年冻土融化过程中代谢为甲烷的碳比例,我们为根据生态系统同位素变化扩展变化的微生物群落奠定了基础。我们的发现表明,微生物生态学可能在生态系统规模对全球变化的响应中很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号